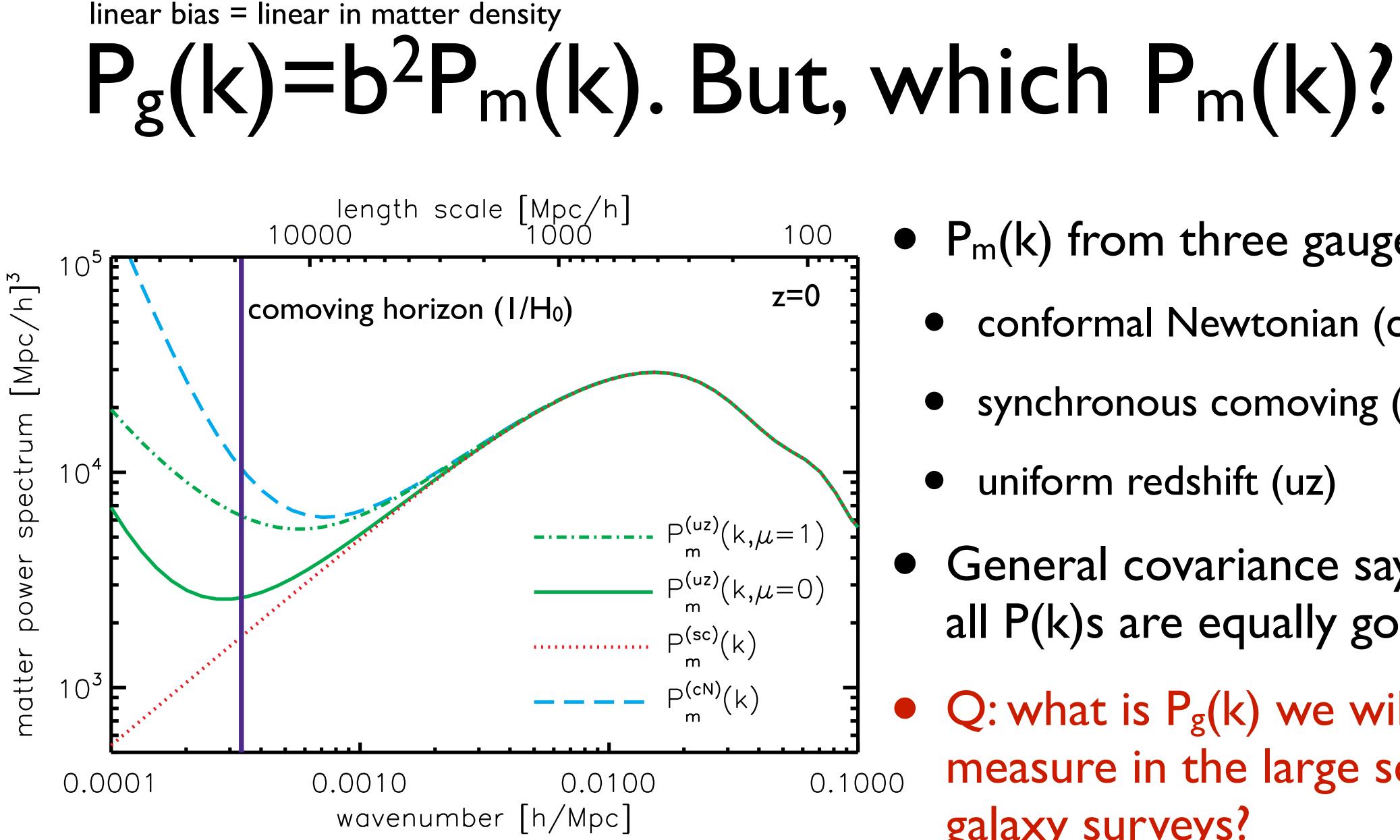
P_g(k) near horizon scales: galaxy bias in general relativity and effective f_{NL}

Donghui Jeong Theoretical AstroPhysics Including Relativity, CalTech Cosmological non-Gaussianity: observations confront theory workshop 14 May 2011

Work in progress with Fabian Schmidt and Chris Hirata



- P_m(k) from three gauges
 - conformal Newtonian (cN)
 - synchronous comoving (sc)
 - uniform redshift (uz)
 - General covariance says all P(k)s are equally good.

Q: what is Pg(k) we will measure in the large scale 0.1000 galaxy surveys?

Difference in background

- Two coordinate systems (gauge) x_A and $x_B [x=(T,x')]$ $n = \bar{n}(x_A) + \delta n(x_A) = \bar{n}(x_B) + \delta n(x_B)$ Scalar variable
 - δn_A with B coordinate variables (gauge transformation): $\dot{a}_{A} - \bar{n}(x_{B})$ $(\tau_A - \tau_B)$ difference in time

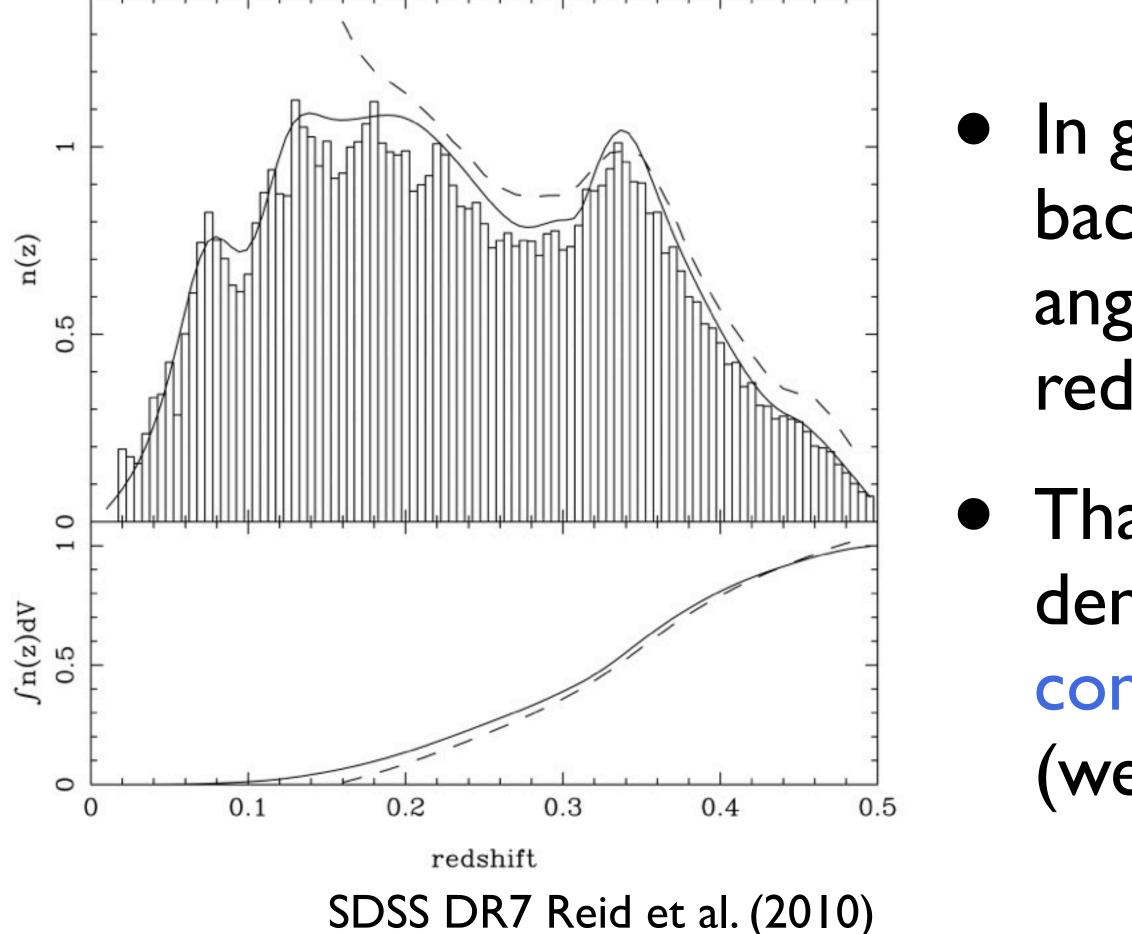
$$\delta n_A = \delta n_B + [\bar{n}(x)]$$
$$= \delta n_B + \bar{n}'(x)$$

• Therefore, it is important to know in which coordinate frame we observe background density!

Two central questions

- In which frame we measure the background number density?
- In which frame is the galaxy bias linear in matter density?

Observed mean galaxy density



 In galaxy surveys, we estimate the background number density by angular averaging samples in a redshift bin.

• That is, we observe the galaxy density contrast reference to the constant-observed-redshift slicing (we call uniform-redshift (uz) gauge).

Linear bias, reconsidered

- In peak-background split, we get bias from (e.g. Fabian's talk) $\delta_g(M,\tau) = \frac{\bar{n}(M,\delta_c-\delta_l,\tau)}{\bar{n}(M,\delta_c,\tau)} - 1 \simeq -\frac{\partial \ln \bar{n}(M,\delta_c,\tau)}{\partial \delta_c} \delta_l$ • Hidden assumption: T, or $\sigma_R(T)$, is constant in space. δτ3 δτ5 δτι $\delta \tau_4$ δτ₆ $\delta \tau_2$ constant time hypersurface
- Therefore, bias is linear iff the constant time hyper-surface shares same σ_R (for any given scale R), or evolutionary stage, or conformal time! Synchronous comoving (sc) gauge!

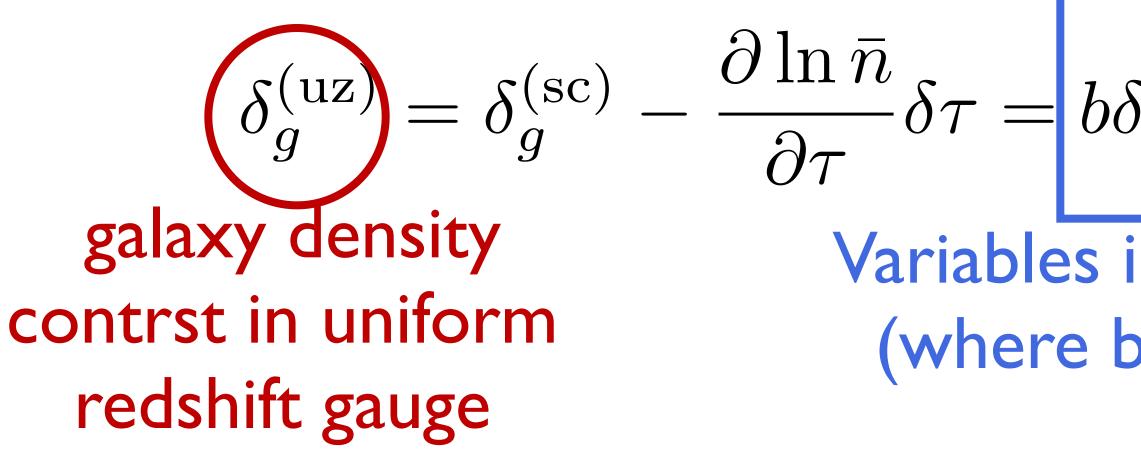
For other argument why we need to do it in (sc) gauge, see, e.g. Wands & Slosar (2009), Bartolo et al. (2010).

Adding up two answers

• δT = time difference between (sc) and (uz) gauge $(\mathrm{sc}) + aH\delta\tau$

$$\delta z^{(\mathrm{uz})} = 0 = \delta z^{(\mathrm{uz})}$$

• With the same time change, the density contrast of galaxies are transformed as



$$\delta_m^{(\mathrm{sc})} + \frac{1}{aH} \frac{\partial \ln \bar{n}}{\partial \tau} \delta z^{(\mathrm{sc})}$$

Variables in synchronous comoving gauge (where bias is linear in matter density)

One more step

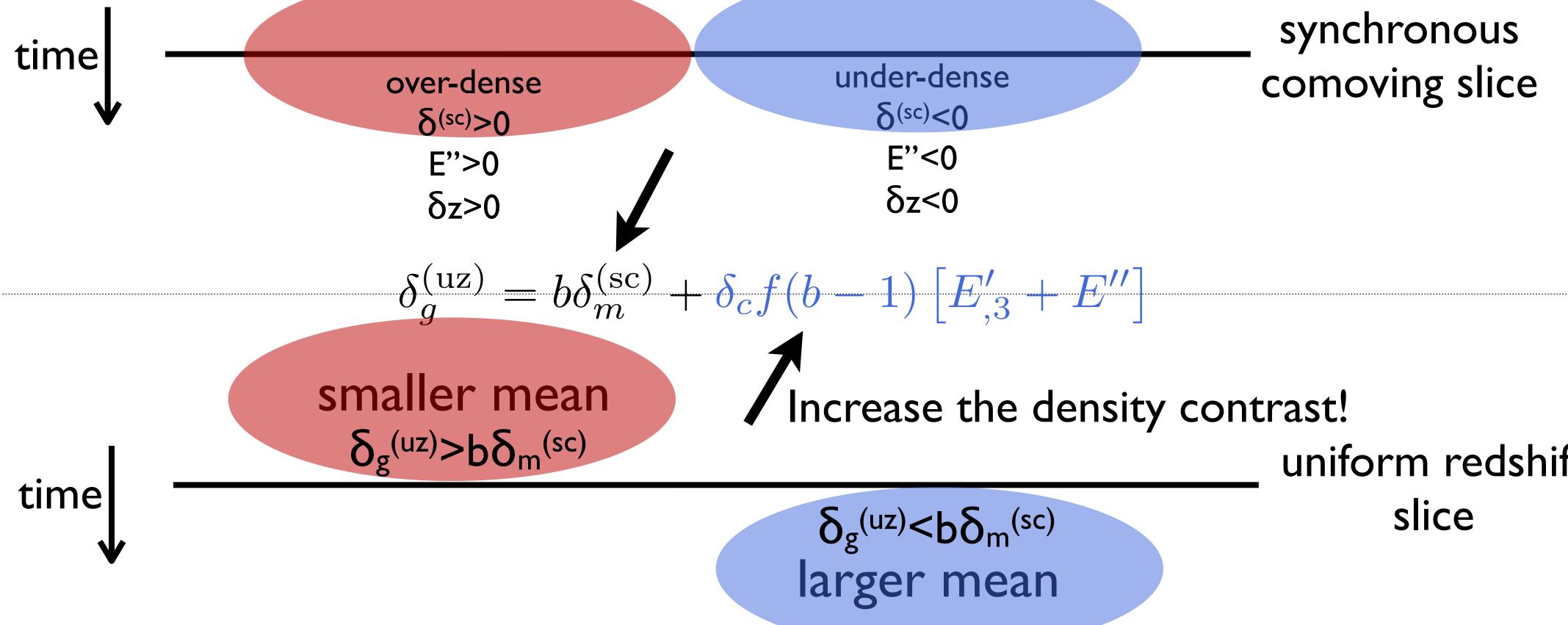
- Assuming the universal mass function (f=dlnD/dlna) $\frac{\partial \ln \bar{n}}{\partial \tau} = \frac{\partial \ln \bar{n}}{\partial \sigma_R} \frac{\partial \sigma_R}{\partial \tau} =$
- redhisft perturbation in synchronous comoving gauge
 - $\delta z^{(sc)} = E'_{,3} + E'' + [ISW]$
- Final formula for $\delta_g^{(uz)}$:

 $\delta_q^{(\mathrm{uz})} = b\delta_m^{(\mathrm{sc})} + \delta_c f(b-1) \left[E'_{,3} + E'' \right]$

spatial metric in (sc) gauge $\longrightarrow g_{ij} = a^2(\tau) \left[(1+2D)\delta_{ij} + 2\left(\partial_i\partial_j - \frac{1}{3}\delta_{ij}\partial^2\right) E \right]$

$$= aH\delta_c f(b-1)$$

Meaning of this equation (Einstein de-Sitter Universe)

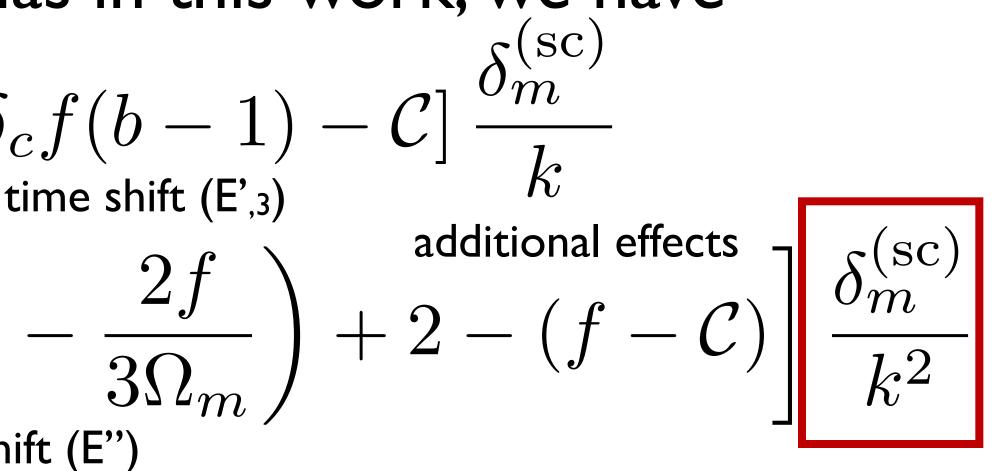


uniform redshift

There are more GR effects!

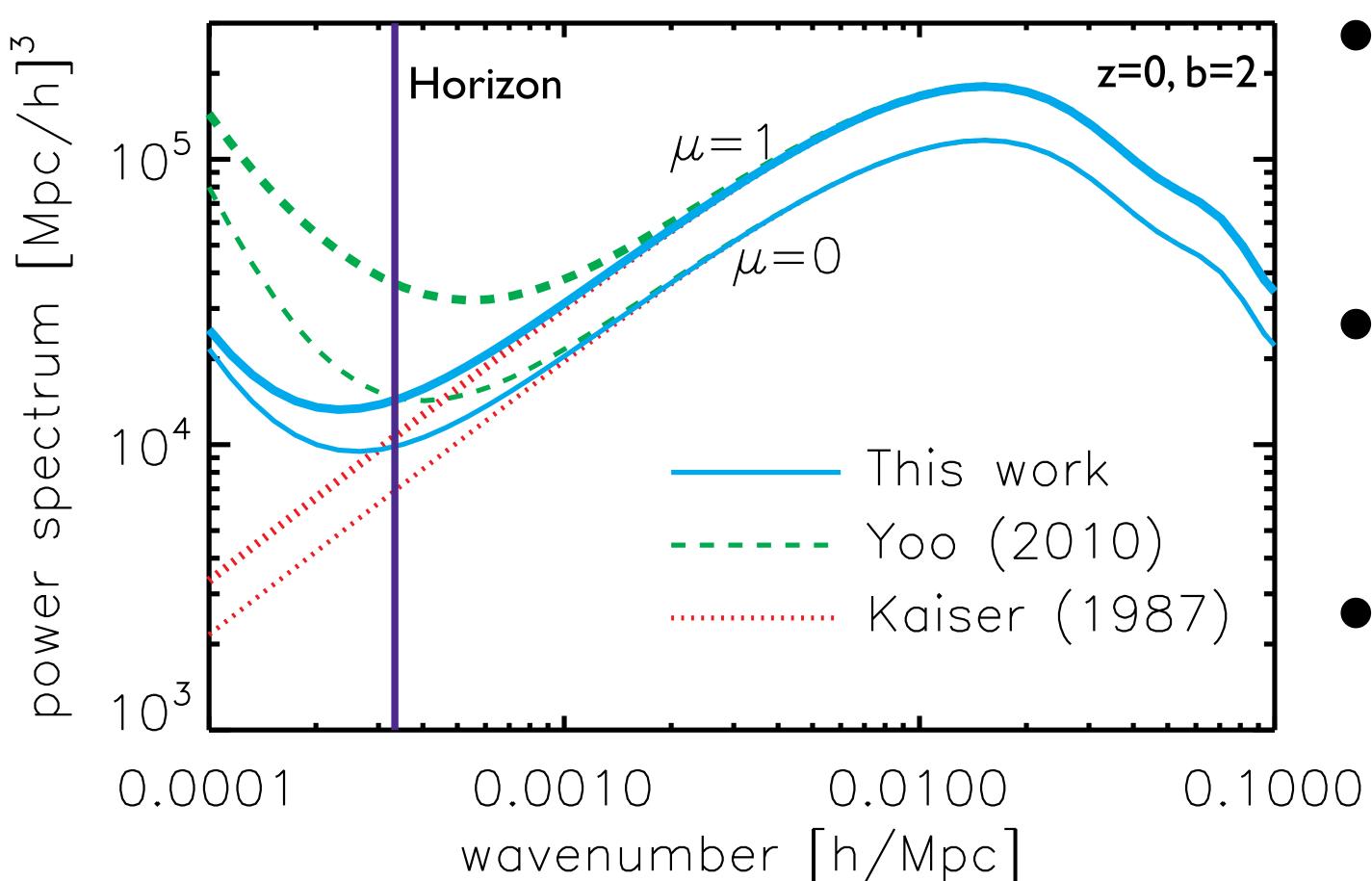
- Effect from volume, magnification in general relativity
 - Yoo et al. (2009), Yoo (2010), and his talk (next)!
- Including all effects + new bias in this work, we have

$$\begin{split} \delta_g^{\text{obs}} = & (b + f\mu^2) \delta_m^{(sc)} + i\mu a H f \left[\delta_{C} \right] \\ & \text{Kaiser (1987)} \\ & + \frac{3}{2} a^2 H^2 \Omega_m \left[\delta_c f(b-1) \left(1 \right) \right] \\ & \text{direction indep. time shift} \\ C = & \frac{3}{2} \Omega_m + (5p-2) \left(1 - \frac{1}{a H \chi} \right) \end{split}$$



 $dn/dL \propto L^{-(5p/2+1)}$

Comp. with previous works

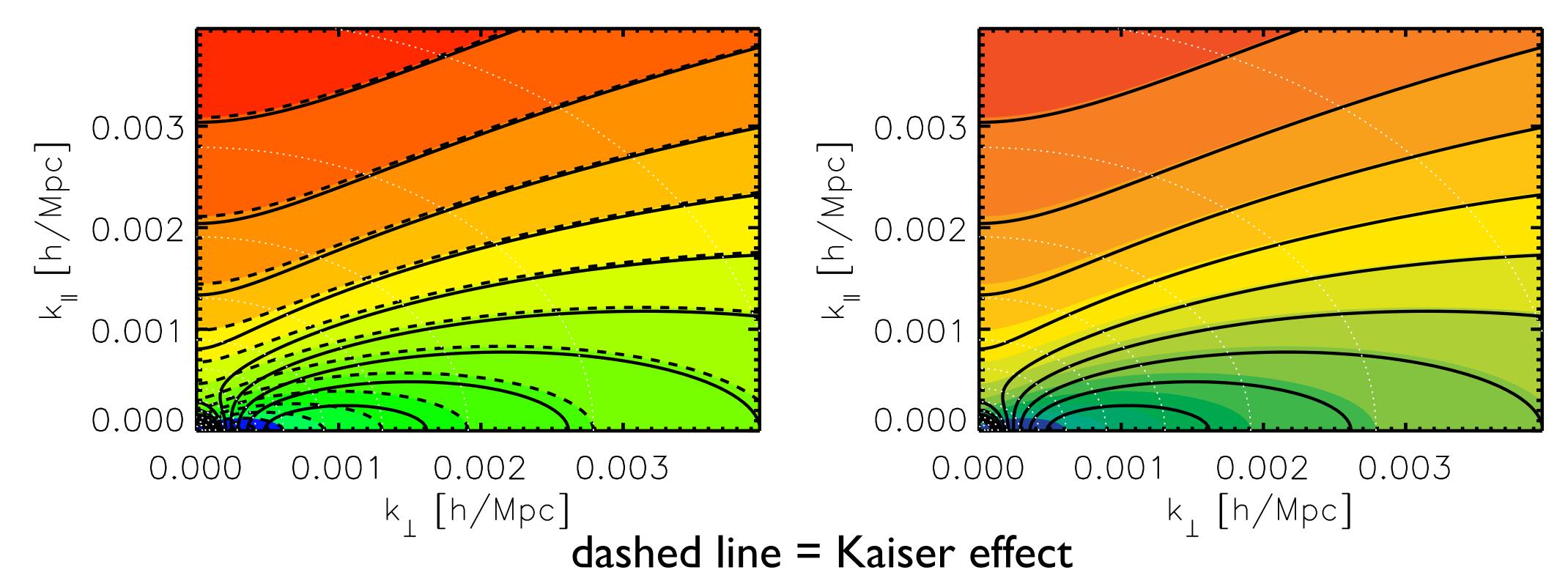


- Red = linear bias with linear redshift space distortion
- Green = linear bias in the uniform redshift gauge

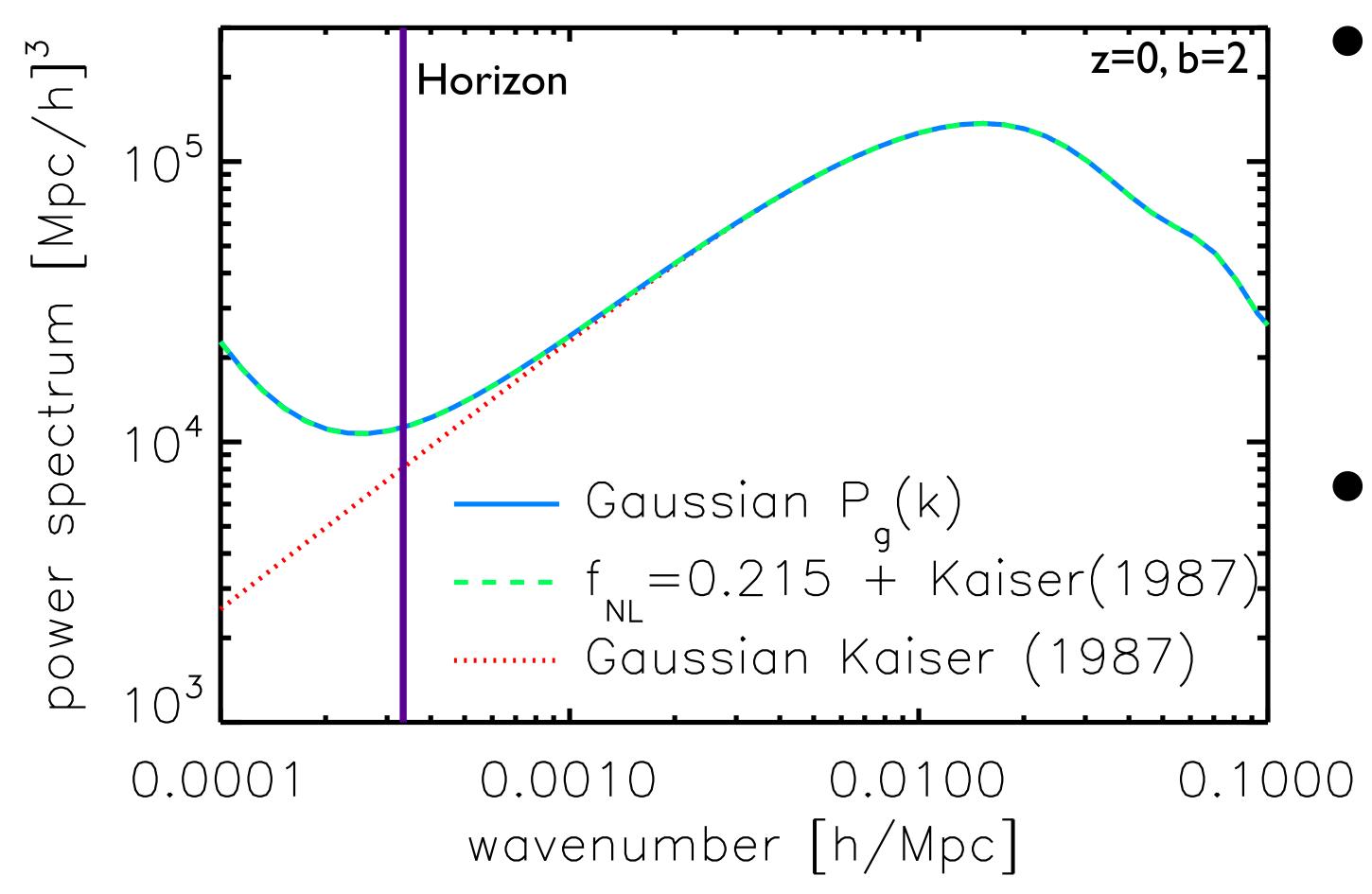
 Blue = linear bias in the synchronous
comoving gauge

galaxy power spectrum (2D) Gaussian 2D Pk with non-Gaussian 2D Pk with $f_{NL}=0.215$

GR correction

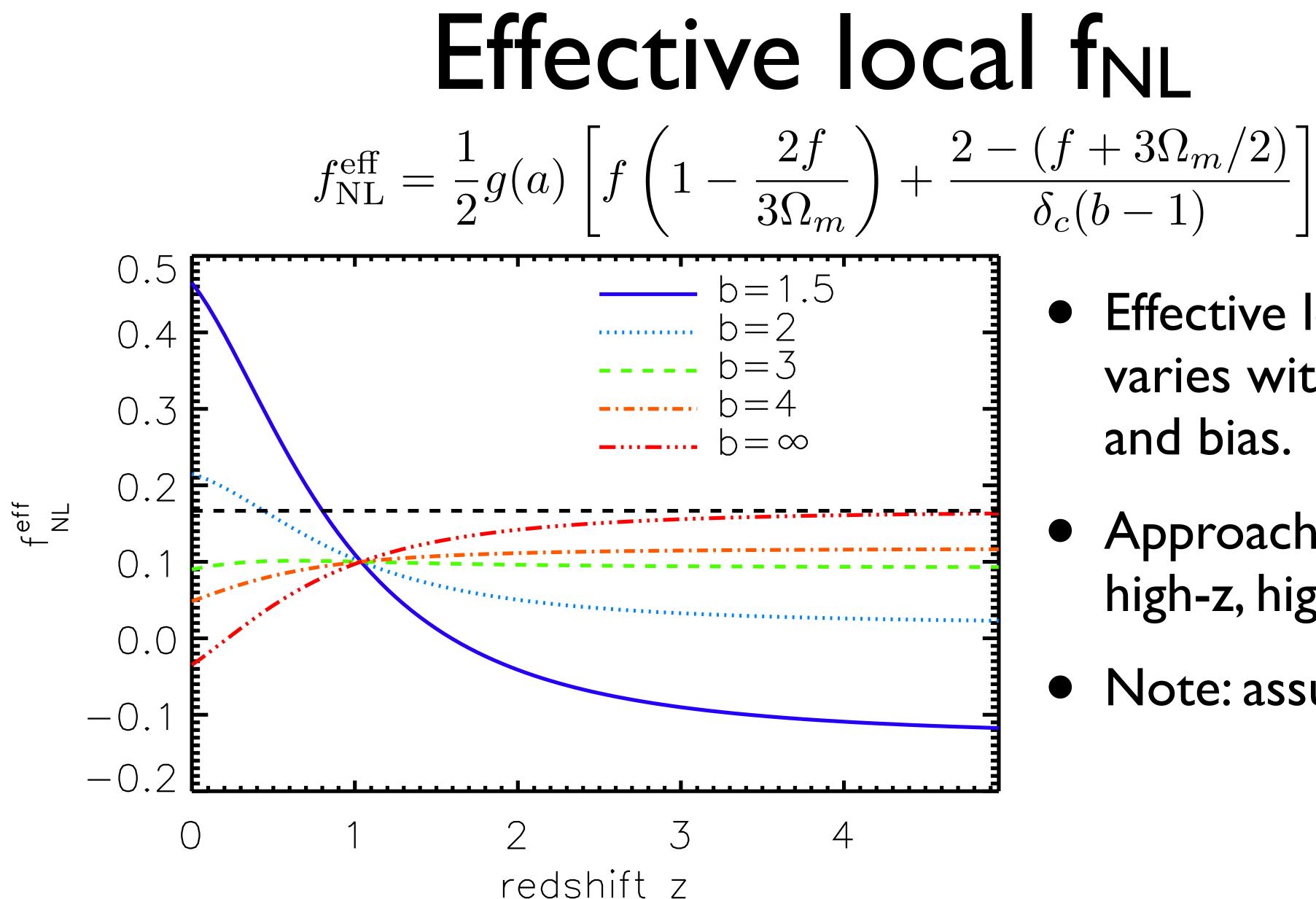


galaxy power spectrum (ID)



Near Horizon scales, the GR effect is dominate over the linear galaxy power spectrum

Note: Most of deviation from the volume effect!



- Effective local fNL varies with redshift
- Approaching 1/6 for high-z, high b
- Note: assumed p=0.4

Conclusion

- QI: In which frame we measure the background number density?
 - [AI] Uniform redshift gauge
- Q2: In which frame is the galaxy bias linear in matter density? • [A2] Synchronous comoving gauge
- Combining two, we calculate the bias relation on horizon scales in synchronous comoving gauge.
- This leads $-0.1 < f_{NL}^{(eff)} < 0.5$, when p=0.4, b>1.5.